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NASA’s Deep Space One (DS1)  mission  is unprecedented. Normally justified by science 
data return as the primary, if not the sole consideration, DSl is the first NASA  mission 
whose  main purpose is to demonstrate the flight readiness of a set of technologies. DSl 
is the  vanguard of NASA’s  New Millennium Program,  which  was conceived to directly 
address the ongoing challenge of flight qualifying technologies for mission use, and to 
short-circuit the Catch-22 situation  where flight project managers naturally prefer to 
utilize technologies only after they’ve been  flown  on another mission. Any of the DS1- 
qualified technologies may  hold  the  key towards enabling future NASA space 
exploration missions. DS1 carries a dozen  technology experiments, each demonstrating 
new capabilities which cover the  gamut of spacecraft functions from propulsion to 
sensing to power to communications. Three of these technology experiments 
demonstrate new capabilities in  spacecraft  autonomy and autonomous mission 
operations. 

The autonomy-related experiment on  DS 1 with  the largest scope is a joint NASA  Ames 
Research Center (ARC) / Jet Propulsion Laboratory (JPL) project known as the Remote 
Agent (RA). RA is both  an  autonomy architecture and a set of component reasoning 
engines for the functions of mission  planning, execution and fault protection. 

One of the fundamental space mission functions is navigation. DS1 is the first 
interplanetary mission  to  be navigated by  an Autonomous  Navigation system of any 
type.  All previous missions have been navigated by ground operators. The DS1 
navigation technology demonstration  (AutoNav)  breaks this ground-link, and enables a 
spacecraft to navigate independently of ground teams and ground-links. 

As spacecraft begin  to  become  more  autonomous,  mission operations concepts must also 
evolve. The Beacon  Operations (BMOX) experiment on DS1 demonstrates a new end- 
to-end concept for mission operations, where  the spacecraft takes responsibility for 
determining when ground support is needed. 

One of the lessons learned by the NASA autonomy technologists is that software 
engineering issues emerge as  on  the critical path towards realizing autonomy capabilities. 
One of the  most daunting autonomy software issues is that of testing. Encouragingly, a 



technique  based in formal methods  yielded  important results on DS 1 when  an error was 
detected early on  in a component of  the Remote Agent. 

Another technique in software engineering yielded crucial results on DS 1 when 
automatic code generation  was  successfully  used to generate much  of the core fault 
protection flight code. Although  not  an official technology experiment, this success 
nonetheless enabled DS1 to meet its intense development schedule and launch in  October 
1998. 

The Remote Agent team is being led by Doug Bernard at JPL and by  Pandu  Nayak  at 
ARC. The Remote Agent Experiment (RAX) is a flight experiment that demonstrates a 
new approach to spacecraft commanding and control. In  the Remote Agent approach, the 
operational rules and constraints are encoded in  the flight software and the software may 
be considered to  be  an autonomous "remote agent" of the spacecraft operators in  the 
sense  that  the operators rely  on the agent to achieve particular goals. The operators do 
not  know  the exact conditions on  the spacecraft, so they do not tell the agent exactly what 
to do at each instant of time. They do, however, tell the agent exactly which goals to 
achieve  in a period of time  as  well  as  how and when to report in. This Remote Agent 
approach is being designed into the  New Millennium Program's Deep Space One (DS 1) 
mission as an experiment. 

The DSl Remote Agent Experiment has  multiple goals. A primary goal of the 
experiment is to provide  an on-board demonstration of spacecraft autonomy. This 
includes goal-oriented commanding, time-driven  and event-driven execution, and  model- 
based fault diagnosis and recovery. An equally important, and complementary, goal of 
the experiment is to familiarize the spacecraft engineering community with the Remote 
Agent approach and to decrease the risk (both  real and perceived) in deploying Remote 
Agents on future missions. 

The Remote Agent is formed by  the integration of three separate Artificial Intelligence 
technologies: an on-board planner-scheduler, a robust multi-threaded executive, and a 
model-based fault diagnosis and recovery system. All three are written  in Harlequin Lisp 
specifically ported to run  under  VxWorks on a RAD6000 processor. Fundamentally, each 
of the three technologies can be  thought of as  using  two distinct components: a general 
purpose reasoning engine and application-specific models. The Remote Agent has been 
designed to operate at several different levels of autonomy ranging from traditional 
spacecraft commanding through on-board planning and execution. The Remote Agent 
flight validation proceeded as  follows:  first  the RA was  used to handle low-level 
commands as instructed by the ground. Next, the  ability of the RA to execute a flexible 
plan generated on the ground was demonstrated. Finally, the RA  was  given approval to 
generate plans on-board and execute them  without  prior inspection of those plans by 
humans. In the course of the experiment, several fictitious failures were injected, giving 
the RA  an opportunity to demonstrate its model-based fault protection approach. With 
ground and flight testing now complete, all Remote  Agent  validation objectives have 



been  met and the  team  is  turning its attention to how  to  apply  the lessons learned during 
the experiment to future technology  upgrades. 

Figure 1. Remote  Agent  Architecture. 

The Autonomous  Navigation team is being  led by Ed Reidel  at JPL. The Autonomous 
Optical Navigation (AutoNav) system, by using images from an onboard camera of 
sufficient quality AutoNav can control the flight path of a spacecraft, including use of 
Solar Electric Propulsion (SEP), and target  one or more flyby encounters, or rendezvous. 
The system was designed to be largely self contained, meaning it can be inserted into a 
fairly simple software architecture, without other autonomous systems required, except 
for Attitude Control (ACS). This is  the situation for DSl. Even  in the simple 
"traditional" environment of the  borrowed Mars Pathfinder software set, highly 
autonomous behavior has been  achieved. The advantages of this system, and the success 
in its utilization so far, have encouraged several missions to baseline its use  in  whole or 
part, these include the Space Technology-4 mission to rendezvous and land with a comet, 
Stardust, which  will use the close approach system, and Deep-Impact, a Comet 
"penetrator" mission, which  will  use encounter and targeting components of AutoNav. 

AutoNav consists of several subsystems and functions: 
Navigation Executive Function - The "NavExec" controls all AutoNav operations that 
cause physical action by the spacecraft. By Communicating with  ACS, NavExec 
accomplishes the complex of activities necessary to turn the spacecraft and image a 
series of target  navigational "beacons," which  in  the case of DS1 are usually "nearby" 
asteroids. These activities include planning  the sequence of turns to optimize time 
utilization and insure completion of the photo-taking sequence on schedule. NavExec 
also performs similar duties during the long segments of SEP activity, wherein the 
spacecraft is commanded by  NavExec to go to the required attitude, light the engine, 
and  maintain  thrust  at  periodically  updated attitudes and magnitudes. Similarly, 
NavExec commands the execution of Trajectory Correction Maneuvers. 



Image Processing - The Image Processing function, as its name implies, is responsible 
for identifying the objects and stars in images relayed to AutoNav, and doing highly 
precise data reductions. Ultimately 0.1 pixel (picture element) accuracy is anticipated 
from the algorithms (although current scattered-light and other problems with  MICAS 
prevent this from being achieved). Special encounter image processing is included to 
amplify  the  dim signal of the  target  as  seen from many hours before closest approach. 
Orbit Determination (OD) - Using data from the Image Processor, AutoNav  computes 
the position of the spacecraft through  the  use of a batch-sequential modified Kalman 
filter. Parameters modeling SEP thrust, and random accelerations (e.g. errors in  solar 
pressure modeling, or spacecraft out gassing) are also estimated. 
Maneuver Planning - With  the results of the  OD  in hand, AutoNav will compute 
updates to the  upcoming SEP thrust  plan, or the components of a "statistical" 
trajectory correction maneuver (i.e. one  based on statistical variations in the OD). 
These TCM's can use either SEP or the hydrazine propulsion system. 
Encounter Knowledge Updates: After  the final TCM is performed, AutoNav 
switches to a special mode of activity, which specifically updates onboard knowledge 
of the target position, and relays this information to ACS for spacecraft pointing 
changes. 

AutoNav  began operations as soon as  the spacecraft came to life after launch on October 
24, 1998, providing critical ephemeris information to ACS. Over the following four 
months, progressively more components of AutoNav  were checked out, and invoked, 
until  April 20, 1999 the spacecraft came completely under  the control of the  AutoNav 
system, flying a  SEP powered flight path computed onboard. It is anticipated that this 
autonomous control will continue with  periodic  necessary suspensions or updates in 
AutoNav control for onboard  tests  and validations, leading to a fully autonomously 
controlled flyby of asteroid 1992KD on July  29, 1999. 
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Figure 2. Comparison of  Conventional  and  Autonomous  Spacecraft  Navigation. 



The Beacon Operations team  is  being led by  Jay  Wyatt at JPL. The purpose of this 
experiment is to flight validate an operations concept and  the associated technology 
components necessary to enable more adaptive operations on future space missions. The 
value  of  this approach is tri-fold. First, it enables the spacecraft to ground link to be 
achieved more cheaply from both a spacecraft resources standpoint as well as a mission 
operations cost perspective. Second, it reduces  the routine traclung burden of large 
aperture antennas, which can help  NASA’s Deep Space Network reduce the loading on 
its overconstrained antenna network. Third, it can reduce mission risk since the low-cost 
link can  be maintained more frequently and/or during times in a mission when  the 
telemetry link cannot be achieved due to spacecraft or mission design constraints. 

Two subsystems implement the  beacon operations functionality on  DS 1. The first is an 
end-to-end tone system that enables the spacecraft to inform the ground whether or not 
data needs to be sent. This tone does  not contain any  telemetry  but rather represents one 
of four possible requests for ground action  (no  action required, contact when convenient, 
contact within a certain time,  or contact immediately). The second subsystem produces 
intelligent data summaries that are downlinked as  telemetry after ground personnel 
respond to the tone request. Onboard summarization produces four types of engineering 
telemetry. High-level spacecraft information, such as the number of alarm crossings, 
spacecraft mode and state histories, and other pertinent statistics are gathered since the 
last ground contact. Episode data is gathered for the culprit and causally related sensor 
channels whenever a sensor violates  an alarm threshold and is stored at a high sample 
rate. Snapshot telemetry is collected at a much lower sample rate for all sensor and 
transform channels. Snapshot data is used  only for rough correlation and to fill in the 
gaps  between episodes. The last component of  the downlinked summary, Performance 
Data, is similar to episode data but captures maneuvers or other events that are known  in 
advance to be of interest to people  on  the ground. All of the summary algorithms are 
implemented in C for the  VxWorks operating system. 

The summary algorithms incorporate AI-based  methods to enhance anomaly detection 
and episode identification capability. The ELMER (Envelope Learning and Monitoring 
using Error Relaxation), technology replaces traditional red-lines with time-varying alarm 
thresholds to provide faster detection with fewer false alarms. These functions are 
learned using a neural  network  and  training  can  be  performed onboard or on the ground 
(ground-based for DS 1). ELMER is particularly powerful because very little knowledge 
engineering is required and training of the  neural  net is accomplished with  nominal 
sensor data. Another AI-based method  produces empirical transforms that derive their 
heritage from previous AI research  work  at JPL in  the area of selective monitoring. Once 
computed onboard, these act  as pseudo sensors. The current transforms for DS1 compute 
high, low, and average values, first derivative, and second derivative. Alarm limits can 
be  placed  on these transforms and they can also serve as  an input to the ELMER neural 
network. Additional transforms, if desired, can easily  be defined and uplinked to the 
spacecraft as  the  mission progresses. 
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Figure 3. Beacon  Operations  System 

The DS1 autonomy software testing  work  was led Mike Lowry  at ARC. Within the 
realm of space exploration a major obstacle to widespread application of autonomy 
capabilities in flight software is not just technical feasibility; it is doubt about its 
trustworthiness as a replacement for human-in-the-loop decision-making. Autonomous 
control systems raise difficult verification & validation issues because, unlike 
conventional sequencer-based open-loop systems that perform transactions visible 
through  uplinWdownlink communications, they close many control loops and arbitrate 
many resources onboard with specialized reasoning  in multiple concurrent threads. The 
number of possible execution paths for autonomous control systems is many orders of 
magnitude greater than traditional flight control software. What is needed are V&V 
techniques that significantly increase confidence in these decision-making control 
systems. Towards this end, researchers at  NASA  Ames, JPL, and Carnegie Mellon 
University demonstrated techniques for verifying  the  greatly expanded number of 
possible execution paths inherent in  autonomy software. Techniques were demonstrated 
for all parts of the  remote  agent - planner, executive, and MIR- with  the  most extensive 
demonstration focusing on  the resource manager of the goal-oriented executive. 

Autonomy software is inherently concurrent - that is, multiple processes achieving 
different goals or sub-goals are executed in parallel. Concurrent task software is easier to 
program  than traditional sequences because  the  means of achieving each goal can be 



designed separately. Because of the closed-loop nature of autonomy, each goal  being 
achieved represents a separate process.  However,  the extra degrees of freedom in 
achieving goals through separate processes can lead to unintended interactions between 
processes and lead to failures. It  is these extra degrees of freedom that make autonomy 
software verification difficult through  testing alone. 

The technology of model-checking has been  previously  used to debug and verify 
concurrent digital hardware designs and communication protocols. Most of the 
demonstrations focused on  using model-checlung to debug and  verify portions of the 
remote agent. Model-checlung is a set of mathematical algorithms based on automata 
theory for verifying and debugging concurrent or real-time systems modeled as 
interacting finite state machines. Given a model and a property, a model-checker searches 
for traces of the  model  that violate the  property -a trace is an interleaved sequence of 
states of the finite state machines. Model checkers differ from simulators in that they 
explore all relevant traces. In other words,  they explore all realizable paths through the 
graph of states that  can  be  reached from the initial state and  that match the property being 
checked. Model checkers are particularly  well suited to exploring the relevant execution 
paths of non-deterministic systems with multiple processes running in parallel. This 
makes them well adapted to verification  and debugging of autonomy software. 

For the  procedural executive, model-checking was  applied directly to the core software. 
Fivc concurrency bugs were found by  using model-checlung to explore all possible 
execution traces. The errors found were for unusual situations that were  not fully 
considered by  the designers. For example, a race condition  was found for the situation 
where a task  program  was aborted and  the locks it had  on resources were not released 
correctly if the demon  monitoring  the  locks  woke  up at a particular point. For the planner 
and MIR, both of which are based  on deductive methods as opposed to procedural 
methods, model-checking was  applied to validate the models. Specifically, it was 
demonstrated how model-checking could be  used to find possibly unintended 
consequences of a model, and  thus  help  the  model developer revise the model. Finally, it 
was  shown  how run-time verification could be  tied into the same framework as  model- 
checking through behavior  auditors that  monitor  the run-time execution of autonomy 
software. Behavior auditors are specified in a language similar to the property 
descriptions used by model-checkers. 

The before and after graphic in Figure 4 illustrates a critical step in current approaches to 
analytic  verification - namely, manually abstracting a software system so that current 
verification algorithms can detect bugs. This particular graphic illustrates the  abstraction 
of  the  remote  agent resource manager, in  which five anomalies were detected through 
analytic  verification algorithms. 
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Figure 4. Software  Abstraction  of  Remote  Agent  Resource  Manager 

The auto-coding work  on DS1 was  led  by Nicolas Rouquette at JPL. Until DS1, the JPL 
had  not used code-generation techniques on large scale for avionics software. However, 
the constraints of the  mission  design  and  development cycle, limited budget and 
resources dictated a departure from past practices. The demands of concurrent design  and 
development as  well  as overlapping design  and integration schedules would have drained 
all available resources allocated for system-level fault-protection. The requirement that 
post-launch activities be directed by fault protection further increased the difficulty of  the 
task; on other spacecraft, such activities are typically handled with sequences. 

First, the DS1 project decided to reuse the successful Mars Pathfinder (MPF) fault- 
protection engine as it achieves a good separation of architecture and domain concerns. 
However, MPF relied heavily  on software engineers to encode the domain-specific fault- 
protection  design into the target C language. Despite fewer software-engineering 
resources, DSl faced a nonetheless larger design scope (spinner vs. 3-axis spacecraft) 
that also included post-launch activities that, on  other spacecraft, are typically handled 
with sequences. To step up to this challenge, the fault-protection strategy was 



reorganized to capture all designs in  terms of high-level behavioral and structural 
specifications instead of low-level C code. The Hare1 statechart notation became the 
standard means of describing the design of every fault protection monitor and response. 
Such monitors are responsible for extracting features from raw data to reliably detect the 
occurrence of a known fault while fault responses define the logic that controls the 
spacecraft to mitigate the effects of a fault. 

DS1 represents the first spacecraft at JPL where code generation from statecharts has 
been systematically applied to achieve rigorous  and consistent software implementations 
in the target language directly from the statechart diagrams. This process was supported, 
in  part,  with the Mathwork's Matlab Stateflow' toolbox. This toolbox provides a 
customizable translative code generator for statecharts. Extensive customizations of that 
toolbox  were necessary, first to address  the  needs of the DS 1 fault-protection runtime 
architecture and second, to fulfill the end-to-end needs of the mission from design, to 
software, integration and test and to operations, 

To support  the systematic comparison of test results obtained from any pair of platforms 
(unit test, testbeds, and spacecraft), the execution of fault responses had to be  adequately 
instrumented. Knowledge of the  set of all fault and responses was leveraged to derive a. 
minimal-length encoding/decoding algorithm for on-board compression (encoding) and 
ground decompression (decoding) of state transition events. Instead of instrumenting the 
state transition code of each fault response,  the statechart execution architecture is instead 
instrumented to signal state-transition events to the compression algorithm. From a 
sequence of such events, this algorithm computes an encoded value representing the  path 
to the current state from the top-level statechart  (Le.,  the fault response handling the 
occurrence of a fault) through all intermediate statecharts invoked (i.e., the  hierarchy  of 
helper sub-responses invoked). The encoded path  and ancillary sampled variables 
constitutes an event record. These algorithms produce  the necessary and sufficient set of 
event records to provide full accountability of the rationale behind every state transition 
for every fault response execution within  memory limitations. This technique enables a 
behavior reconstruction approach to testing, the process of producing a parsimonious 
explanation of a fault-response execution by determining the sequence of external events 
that recreates the same event record  history  as  that obtained from the spacecraft. 
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Figure 5. Behavior  Reconstruction  in  Auto-coding. 

These five autonomy technology experiments and related software engineering activities 
on DS1 are paving the way for the use of autonomy capabilities in future NASA 
missions: proving technologies, reducing perceived risk, and ameliorating  first user 
costs. NASA is entering the era of autonomous space systems, and the results achieved 
on DS1 are already leading to applications of the autonomy technologies described here 
as  well as inspiring additional autonomy  technology development work. 

Portions of the  research described in this article were  performed at the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. 
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